
Visual Basic Concepts

Object Naming Guidelines

When selecting names for objects, properties, methods, and events, choose names that can be
easily understood by the users of your component. These elements comprise the programming
interface of your component — the more clear you make their names, the more usable your
code will be.

The rules in this topic apply to names for:

Objects.

The properties, methods, and events that comprise the interfaces of your objects.

Named arguments of properties, methods, and events.

Use Entire Words or Syllables Whenever Possible

It is easier for users to remember complete words than to remember whether you abbreviated
Window as Wind, Wn, or Wnd. The following table lists two examples of recommended naming
conventions.

When you need to abbreviate because an identifier would be too long, try to use complete
initial syllables. For example, use AltExpEval instead of either AlternateExpressionEvaluation or
AltExpnEvln.

Use Mixed Case

All identifiers should use mixed case, rather than underscores, to separate the words in the
identifier. The following table lists two examples of recommended naming conventions.

Use Consistent Terminology

Use the same word you use in the interface; don’t use identifier names like HWND, which are

See Also

Use Don’t use

Application App

SpellCheck SpChk

Use Don’t use

ShortcutMenus Shortcut_Menus, Shortcutmenus, SHORTCUTMENUS,
SHORTCUT_MENUS

BasedOn basedOn

based on Hungarian notation. Remember that this code will be accessed by other users, so try
to use the same word your users would use to describe a concept.

Use the Correct Plural for Collection Class Names

Using plurals rather than inventing new names for collections reduces the number of items a
user must remember. It also simplifies the selection of names for collections. The following
table lists some examples of collection class names.

For example, if you have a class named Axis, a collection of Axis objects is stored in an Axes
class. Similarly, a collection of Vertex objects is stored in a Vertices class. In rare cases where
the same spelling is used for both singular and plural, append the word "Collection" — for
example, SeriesCollection.

Note This naming convention may not be appropriate for some collections, especially
where a set of objects exists independently of the collection. For example, a Mail program
might have a Name object that exists in multiple collections: ToList, CcList, and so forth. In
this case, you might specify the individual name collections as ToNames and CcNames.

Use a Prefix for Your Constants

Select a three- or four-letter, lowercase prefix that identifies your component, and use it on the
names of constants your component provides in its type library, as well as on the names of the
Enums that define those constants.

For example, a code component that provides loan evaluations might use ‘levs’ as its prefix.
The following Enum for loan types uses this prefix. (In addition, the constants include the
upper-case characters ‘LT’ to indicate the enumeration they belong to.)

Public Enum LoanType
 levsLTMortgage = 1
 levsLTCommercial
 levsLTConsumer
End Enum

Using a prefix reduces the chance that the constants for your component will have name
conflicts with constants for other components. Name conflicts of this type can cause difficult
bugs for your users.

The shorter the constant name, the more important this rule becomes. In the worst case —
constant names that are common words, like the names of colors — such conflicts become
almost inevitable.

Verb/Object vs. Object/Verb

Use Don’t use

Axes Axiss

SeriesCollection CollectionSeries

Windows ColWindow

If you create method names that combine a verb with the name of the object it acts on, you
should be consistent about the order. Either place the verb before the object in all cases, as
with InsertWidget and InsertSprocket, or always place the object first, as with WidgetInsert and
SprocketInsert.

Both schemes have their advantages. Verb/object order creates names that are more like
normal speech, and thus show the intent of the method better. Object/verb order groups
together all the methods that affect a particular object.

It doesn’t matter which order you choose, but mixing the two orders will confuse the users of
your component.

Send feedback to MSDN. Look here for MSDN Online resources.

