
Visual Basic Concepts

Visual Basic Coding Conventions

This appendix presents a set of suggested coding conventions for Visual Basic programs.

Coding conventions are programming guidelines that focus not on the logic of the program but
on its physical structure and appearance. They make the code easier to read, understand, and
maintain. Coding conventions can include:

Naming conventions for objects, variables, and procedures.

Standardized formats for labeling and commenting code.

Guidelines for spacing, formatting, and indenting.

In the sections that follow, each of these areas are discussed, along with examples of good
usage.

Topics

Send feedback to MSDN. Look here for MSDN Online resources.

Visual Basic Concepts

Why Coding Conventions?

Why Coding Conventions?

The main reason for using a consistent set of coding conventions is to standardize the
structure and coding style of an application so that you and others can easily read and
understand the code.

Object Naming Conventions

Objects should be named with a consistent prefix that makes it easy to identify the
type of object. This section lists recommended conventions for controls, data access
objects, and menus.

Constant and Variable Naming Conventions

This topic lists recommended conventions for constants and variables supported by
Visual Basic. It also discusses the issues of identifying data type and scope.

Structured Coding Conventions

In addition to naming conventions, structured coding conventions, such as code
commenting and consistent indenting, can greatly improve code readability. This topic
discusses standards for these areas.

The main reason for using a consistent set of coding conventions is to standardize the structure
and coding style of an application so that you and others can easily read and understand the
code.

Good coding conventions result in precise, readable, and unambiguous source code that is
consistent with other language conventions and as intuitive as possible.

Minimal Coding Conventions

A general-purpose set of coding conventions should define the minimal requirements necessary
to accomplish the purposes discussed above, leaving the programmer free to create the
program’s logic and functional flow.

The object is to make the program easy to read and understand without cramping the
programmer’s natural creativity with excessive constraints and arbitrary restrictions.

To this end, the conventions suggested in this appendix are brief and suggestive. They do not
list every possible object or control, nor do they specify every type of informational comment
that could be valuable. Depending on your project and your organization’s specific needs, you
may wish to extend these guidelines to include additional elements, such as:

Conventions for specific objects and components developed in-house or purchased from
third-party vendors.

Variables that describe your organization’s business activities or facilities.

Any other elements that your project or enterprise considers important for clarity and
readability.

For more information For information about restrictions on naming procedures, variables,
and constants, see "Code Basics" in "Programming Fundamentals."

Send feedback to MSDN. Look here for MSDN Online resources.

Visual Basic Concepts

Object Naming Conventions

Objects should be named with a consistent prefix that makes it easy to identify the type of
object. Recommended conventions for some of the objects supported by Visual Basic are listed
below.

Suggested Prefixes for Controls

Control type prefix Example

3D Panel pnl pnlGroup

ADO Data ado adoBiblio

Animated button ani aniMailBox

Check box chk chkReadOnly

Combo box, drop-down list box cbo cboEnglish

Command button cmd cmdExit

Common dialog dlg dlgFileOpen

Communications com comFax

Control (used within procedures
when the specific type is
unknown)

ctr ctrCurrent

Data dat datBiblio

Data-bound combo box dbcbo dbcboLanguage

Data-bound grid dbgrd dbgrdQueryResult

Data-bound list box dblst dblstJobType

Data combo dbc dbcAuthor

Data grid dgd dgdTitles

Data list dbl dblPublisher

Data repeater drp drpLocation

Date picker dtp dtpPublished

Directory list box dir dirSource

Drive list box drv drvTarget

File list box fil filSource

Flat scroll bar fsb fsbMove

Form frm frmEntry

Frame fra fraLanguage

Gauge gau gauStatus

Graph gra graRevenue

Grid grd grdPrices

Hierarchical flexgrid flex flexOrders

Horizontal scroll bar hsb hsbVolume

Image img imgIcon

Image combo imgcbo imgcboProduct

ImageList ils ilsAllIcons

Label lbl lblHelpMessage

Lightweight check box lwchk lwchkArchive

Lightweight combo box lwcbo lwcboGerman

Lightweight command button lwcmd lwcmdRemove

Lightweight frame lwfra lwfraSaveOptions

Lightweight horizontal scroll bar lwhsb lwhsbVolume

Lightweight list box lwlst lwlstCostCenters

Lightweight option button lwopt lwoptIncomeLevel

Lightweight text box lwtxt lwoptStreet

Lightweight vertical scroll bar lwvsb lwvsbYear

Line lin linVertical

List box lst lstPolicyCodes

ListView lvw lvwHeadings

MAPI message mpm mpmSentMessage

MAPI session mps mpsSession

MCI mci mciVideo

Menu mnu mnuFileOpen

Month view mvw mvwPeriod

MS Chart ch chSalesbyRegion

MS Flex grid msg msgClients

MS Tab mst mstFirst

OLE container ole oleWorksheet

Option button opt optGender

Picture box pic picVGA

Picture clip clp clpToolbar

ProgressBar prg prgLoadFile

Remote Data rd rdTitles

RichTextBox rtf rtfReport

Suggested Prefixes for Data Access Objects (DAO)

Use the following prefixes to indicate Data Access Objects.

Shape shp shpCircle

Slider sld sldScale

Spin spn spnPages

StatusBar sta staDateTime

SysInfo sys sysMonitor

TabStrip tab tabOptions

Text box txt txtLastName

Timer tmr tmrAlarm

Toolbar tlb tlbActions

TreeView tre treOrganization

UpDown upd updDirection

Vertical scroll bar vsb vsbRate

Database object Prefix Example

Container con conReports

Database db dbAccounts

DBEngine dbe dbeJet

Document doc docSalesReport

Field fld fldAddress

Group grp grpFinance

Index ix idxAge

Parameter prm prmJobCode

QueryDef qry qrySalesByRegion

Recordset rec recForecast

Relation rel relEmployeeDept

TableDef tbd tbdCustomers

User usr usrNew

Some examples:

Dim dbBiblio As Database
Dim recPubsInNY As Recordset, strSQLStmt As String
Const DB_READONLY = 4 ' Set constant.
'Open database.
Set dbBiblio = OpenDatabase("BIBLIO.MDB")
' Set text for the SQL statement.
strSQLStmt = "SELECT * FROM Publishers WHERE & _
 State = 'NY'"
' Create the new Recordset object.
Set recPubsInNY = db.OpenRecordset(strSQLStmt, _
 dbReadOnly)

Suggested Prefixes for Menus

Applications frequently use many menu controls, making it useful to have a unique set of
naming conventions for these controls. Menu control prefixes should be extended beyond the
initial "mnu" label by adding an additional prefix for each level of nesting, with the final menu
caption at the end of the name string. The following table lists some examples.

When this naming convention is used, all members of a particular menu group are listed next to
each other in Visual Basic’s Properties window. In addition, the menu control names clearly
document the menu items to which they are attached.

Choosing Prefixes for Other Controls

For controls not listed above, you should try to standardize on a unique two or three character
prefix for consistency. Use more than three characters only if needed for clarity.

For derived or modified controls, for example, extend the prefixes above so that there is no
confusion over which control is really being used. For third-party controls, a lower-case
abbreviation for the manufacturer could be added to the prefix. For example, a control instance
created from the Visual Basic Professional 3D frame could uses a prefix of fra3d to avoid
confusion over which control is really being used.

Send feedback to MSDN. Look here for MSDN Online resources.

Workspace wsp wspMine

Menu caption sequence Menu handler name

File Open mnuFileOpen

File Send Email mnuFileSendEmail

File Send Fax mnuFileSendFax

Format Character mnuFormatCharacter

Help Contents mnuHelpContents

Visual Basic Concepts

Constant and Variable Naming Conventions

In addition to objects, constants and variables also require well-formed naming conventions.
This section lists recommended conventions for constants and variables supported by Visual
Basic. It also discusses the issues of identifying data type and scope.

Variables should always be defined with the smallest scope possible. Global (Public) variables
can create enormously complex state machines and make the logic of an application extremely
difficult to understand. Global variables also make the reuse and maintenance of your code
much more difficult.

Variables in Visual Basic can have the following scope:

In a Visual Basic application, global variables should be used only when there is no other
convenient way to share data between forms. When global variables must be used, it is good
practice to declare them all in a single module, grouped by function. Give the module a
meaningful name that indicates its purpose, such as Public.bas.

It is good coding practice to write modular code whenever possible. For example, if your
application displays a dialog box, put all the controls and code required to perform the dialog's
task in a single form. This helps to keep the application's code organized into useful
components and minimizes its run-time overhead.

With the exception of global variables (which should not be passed), procedures and functions
should operate only on objects passed to them. Global variables that are used in procedures
should be identified in the declaration section at the beginning of the procedure. In addition,
you should pass arguments to subs and functions using ByVal, unless you explicitly need to
change the value of the passed argument.

Variable Scope Prefixes

As project size grows, so does the value of recognizing variable scope quickly. A one-letter
scope prefix preceding the type prefix provides this, without greatly increasing the size of
variable names.

Scope Declaration Visible in

Procedure-level 'Private' in procedure, sub, or
function

The procedure in which it is
declared

Module-level 'Private' in the declarations
section of a form or code
module (.frm, .bas)

Every procedure in the form or
code module

Global 'Public' in the declarations
section of a code module
(.bas)

Everywhere in the application

A variable has global scope if it is declared Public in a standard module or a form module. A
variable has module-level scope if declared Private in a standard module or form module,
respectively.

Note Consistency is crucial to productive use of this technique; the syntax checker in
Visual Basic will not catch module-level variables that begin with "p."

Constants

The body of constant names should be mixed case with capitals initiating each word. Although
standard Visual Basic constants do not include data type and scope information, prefixes like i,
s, g, and m can be very useful in understanding the value and scope of a constant. For constant
names, follow the same rules as variables. For example:

mintUserListMax 'Max entry limit for User list
 '(integer value,local to module)
gstrNewLine 'New Line character
 '(string, global to application)

Variables

Declaring all variables saves programming time by reducing the number of bugs caused by
typos (for example, aUserNameTmp vs. sUserNameTmp vs. sUserNameTemp). On the Editor
tab of the Options dialog, check the Require Variable Declaration option. The Option Explicit
statement requires that you declare all the variables in your Visual Basic program.

Variables should be prefixed to indicate their data type. Optionally, especially for large
programs, the prefix can be extended to indicate the scope of the variable.

Variable Data Types

Use the following prefixes to indicate a variable's data type.

Scope Prefix Example

Global g gstrUserName

Module-level m mblnCalcInProgress

Local to procedure None dblVelocity

Data type Prefix Example

Boolean bln blnFound

Byte byt bytRasterData

Collection object col colWidgets

Currency cur curRevenue

Date (Time) dtm dtmStart

Descriptive Variable and Procedure Names

The body of a variable or procedure name should use mixed case and should be as long as
necessary to describe its purpose. In addition, function names should begin with a verb, such
as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to help keep name
lengths reasonable. In general, variable names greater than 32 characters can be difficult to
read on VGA displays.

When using abbreviations, make sure they are consistent throughout the entire application.
Randomly switching between Cnt and Count within a project will lead to unnecessary confusion.

User-Defined Types

In a large project with many user-defined types, it is often useful to give each such type a
three-character prefix of its own. If these prefixes begin with "u," they will still be easy to
recognize quickly when you are working with a user-defined type. For example, “ucli” could be
used as the prefix for variables of a user-defined Client type.

Send feedback to MSDN. Look here for MSDN Online resources.

Visual Basic Concepts

Structured Coding Conventions

In addition to naming conventions, structured coding conventions, such as code commenting
and consistent indenting, can greatly improve code readability.

Code Commenting Conventions

Double dbl dblTolerance

Error err errOrderNum

Integer int intQuantity

Long lng lngDistance

Object obj objCurrent

Single sng sngAverage

String str strFName

User-defined type udt udtEmployee

Variant vnt vntCheckSum

All procedures and functions should begin with a brief comment describing the functional
characteristics of the procedure (what it does). This description should not describe the
implementation details (how it does it) because these often change over time, resulting in
unnecessary comment maintenance work, or worse yet, erroneous comments. The code itself
and any necessary inline comments will describe the implementation.

Arguments passed to a procedure should be described when their functions are not obvious and
when the procedure expects the arguments to be in a specific range. Function return values
and global variables that are changed by the procedure, especially through reference
arguments, must also be described at the beginning of each procedure.

Procedure header comment blocks should include the following section headings. For examples,
see the next section, "Formatting Your Code."

Remember the following points:

Every important variable declaration should include an inline comment describing the use
of the variable being declared.

Variables, controls, and procedures should be named clearly enough that inline
commenting is only needed for complex implementation details.

At the start of the .bas module that contains the project's Visual Basic generic constant
declarations, you should include an overview that describes the application, enumerating
primary data objects, procedures, algorithms, dialogs, databases, and system
dependencies. Sometimes a piece of pseudocode describing the algorithm can be helpful.

Formatting Your Code

Because many programmers still use VGA displays, screen space should be conserved as much
as possible while still allowing code formatting to reflect logic structure and nesting. Here are a
few pointers:

Standard, tab-based, nested blocks should be indented four spaces (the default).

The functional overview comment of a procedure should be indented one space. The
highest level statements that follow the overview comment should be indented one tab,
with each nested block indented an additional tab. For example:

Section heading Comment description

Purpose What the procedure does (not how).

Assumptions List of each external variable, control, open file, or other element
that is not obvious.

Effects List of each affected external variable, control, or file and the
effect it has (only if this is not obvious).

Inputs Each argument that may not be obvious. Arguments are on a
separate line with inline comments.

Returns Explanation of the values returned by functions.

'***
' Purpose: Locates the first occurrence of a
' specified user in the UserList array.
' Inputs:
' strUserList(): the list of users to be searched.
' strTargetUser: the name of the user to search for.
' Returns: The index of the first occurrence of the
' rsTargetUser in the rasUserList array.
' If target user is not found, return -1.
'***

Function intFindUser (strUserList() As String, strTargetUser As _
 String)As Integer
 Dim i As Integer ' Loop counter.
 Dim blnFound As Integer ' Target found flag.
 intFindUser = -1
 i = 0
 While i <= Ubound(strUserList) and Not blnFound
 If strUserList(i) = strTargetUser Then
 blnFound = True
 intFindUser = i
 End If
 i = i + 1
 Wend
End Function

Grouping Constants

Variables and defined constants should be grouped by function rather than split into isolated
areas or special files. Visual Basic generic constants should be grouped in a single module to
separate them from application-specific declarations.

& and + Operators

Always use the & operator when linking strings and the + operator when working with
numerical values. Using the + operator to concatenate may cause problems when operating on
two variants. For example:

vntVar1 = "10.01"
vntVar2 = 11
vntResult = vntVar1 + vntVar2 'vntResult = 21.01
vntResult = vntVar1 & vntVar2 'vntResult = 10.0111

Creating Strings for MsgBox, InputBox, and SQL Queries

When creating a long string, use the underscore line-continuation character to create multiple
lines of code so that you can read or debug the string easily. This technique is particularly
useful when displaying a message box (MsgBox) or input box (InputBox) or when creating an
SQL string. For example:

Dim Msg As String
Msg = "This is a paragraph that will be " _
& "in a message box. The text is" _
& " broken into several lines of code" _
& " in the source code, making it easier" _
& " for the programmer to read and debug."
MsgBox Msg

Dim QRY As String
QRY = "SELECT *" _

& " FROM Titles" _
& " WHERE [Year Published] > 1988"
TitlesQry.SQL = QRY

Send feedback to MSDN. Look here for MSDN Online resources.

